如何利用R软件进行聚类分析
1、打开R软件,输入数据,生成距离结构。这里设样本数据为1,2,3,7,8,9,15。输入代码:x=c(1,2,3,7,8,9,15);dim(x)=c(7,1);d=dist(x)其中x是生成向量,dim表示定义向量的维数,dist表示生成距离矩阵。
2、生成系统聚类。输入代码:hc1=hclust(d,"single");hc2=hclust(d,"complete");hc3=hclust(d,"median");hc4=hclust(d,"average");其中hclust表示系统聚类计算函数,single、complete、median、average分别表示最短距离法、最长距离法、中间距离法、类平均法这四类计算方法。
3、绘制出聚类图形。利用plot函数绘制出最短距离法计算的聚类图。代码:plot(hc1)
4、为了方便比较各聚类方法的效果,可以将不同方法的图绘制在一张图上。输入代码:opar=par(mfrow=c(2,2))plot(hc1,hang=-1);plot(hc2,hang=-1);plot(hc3,hang=-1);plot(hc4,hang=-1);par(opar)其中par为绘图参数函数。mfrow为设置小图数量的参数,mfrow=c(2,2)表示把图按行排列成2×2个小图。画出的图形见下图。
5、从图中可以看出聚类的结果为第1,2,3个值为一类,4,5,6个值为一类,第七个值为一类。共分为三类。如果想自动设置分类个数,可以利用函数rect.hclust。plot(hc1);re=rect.hclust(hc1,k=2)表示将聚类图分为两类。
聚类分析可分为Q型聚类和R型聚类,请问Q和R这两个字母的含义是什么,为什么叫Q和R而不叫其他的字母
在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。
R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。R型聚类分析的主要作用是:
1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。
2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。Q型聚类分析的优点是:
1、可以综合利用多个变量的信息对样本进行分类;
2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果;
3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。为了进行聚类分析,首先我们需要定义样品间的距离。 常见的距离有 :
① 绝对值距离 ② 欧氏距离 ③ 明科夫斯基距离 ④ 切比雪夫距离
q型聚类分析方法
聚类分析:聚类分析是通过数据建模简化数据的一种方法。“物以类聚,人以群分”正是对聚类分析最好的诠释。本文就具体介绍一下聚类分析,以及就按样本进行聚类分析的分析。
一、聚类分析可以分为:
对样本进行聚类分析(Q型聚类),此类聚类的代表是K-means聚类方法;
对变量(标题)进行聚类分析(R型聚类),此类聚类的代表是分层聚类。
常见为样本聚类,比如有500个人,这500个人可以聚成几个类别。资料来源:SPSSAU帮助手册-聚类分析
聚类分析(Q型聚类)用于将样本进行分类处理,通常是以定量数据作为分类标准。如果分析人员需要是按样本进行聚类,则使用SPSSAU的进阶方法模块中的“聚类分析”功能,SPSSAU其会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。
如果是按变量(标题)聚类,此时应该使用分层聚类,并且结合聚类树状图进行综合判定分析,得出科学分析结果。比如当前有8个裁判对于300个选手进行打分,试图想对8个裁判进行聚类,以挖掘出裁判的打分偏好风格类别情况。
还没有评论,来说两句吧...