如何利用R软件进行聚类分析
1、打开R软件,输入数据,生成距离结构。这里设样本数据为1,2,3,7,8,9,15。输入代码:x=c(1,2,3,7,8,9,15);dim(x)=c(7,1);d=dist(x)其中x是生成向量,dim表示定义向量的维数,dist表示生成距离矩阵。
2、生成系统聚类。输入代码:hc1=hclust(d,"single");hc2=hclust(d,"complete");hc3=hclust(d,"median");hc4=hclust(d,"average");其中hclust表示系统聚类计算函数,single、complete、median、average分别表示最短距离法、最长距离法、中间距离法、类平均法这四类计算方法。
3、绘制出聚类图形。利用plot函数绘制出最短距离法计算的聚类图。代码:plot(hc1)
4、为了方便比较各聚类方法的效果,可以将不同方法的图绘制在一张图上。输入代码:opar=par(mfrow=c(2,2))plot(hc1,hang=-1);plot(hc2,hang=-1);plot(hc3,hang=-1);plot(hc4,hang=-1);par(opar)其中par为绘图参数函数。mfrow为设置小图数量的参数,mfrow=c(2,2)表示把图按行排列成2×2个小图。画出的图形见下图。
5、从图中可以看出聚类的结果为第1,2,3个值为一类,4,5,6个值为一类,第七个值为一类。共分为三类。如果想自动设置分类个数,可以利用函数rect.hclust。plot(hc1);re=rect.hclust(hc1,k=2)表示将聚类图分为两类。
K-均值聚类和R聚类区别
k 均值聚类法 快速高效,特别是大量数据时,准确性高一些,但是需要你自己指定聚类的类别数量 系统聚类法则是系统自己根据数据之间的距离来自动列出类别,所以通过系统聚类法 得出一个树状图,至于聚类的类别 需要自己根据树状图以及经验来确定
聚类分析统计量有哪些
聚类分析是研究“物以类聚”的一种科学有效的方法。做聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。
系统聚类是目前应用最为广泛的一种聚类方法,其基本思想是:先将待聚类的n个样品(或者变量)各自看成一类,共有n类;然后按照实现选定的方法计算每两类之间的聚类统计量,即某种距离(或者相似系数),将关系最为密切的两类合为一类,其余不变,即得到n-1类;再按照前面的计算方法计算新类与其他类之间的距离(或相似系数),再将关系最为密切的两类并为一类,其余不变,即得到n-2类;如此下去,每次重复都减少一类,直到最后所有的样品(或者变量)都归为一类为止。
无论是R型聚类还是Q型聚类,关键是如何定义相似性。即如何把相似性数量化。聚类的第一步需要给出两个指标或两个样本间相似性度量的统计量。
聚类分析中用来衡量样本个体之间属性相似程度的统计量以及指标变量之间属性相似度的统计量是不同的,前者用的统计量是距离系数,后者用的统计量是相似系款。
距离系数的定义有很多,如欧式距离、极端距离、绝对距离等。
相似系数的定义也很多,如相关系数、列联系数等。
还没有评论,来说两句吧...