聚类分析可分为Q型聚类和R型聚类,请问Q和R这两个字母的含义是什么,为什么叫Q和R而不叫其他的字母
在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。
R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。R型聚类分析的主要作用是:
1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。
2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。Q型聚类分析的优点是:
1、可以综合利用多个变量的信息对样本进行分类;
2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果;
3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。为了进行聚类分析,首先我们需要定义样品间的距离。 常见的距离有 :
① 绝对值距离 ② 欧氏距离 ③ 明科夫斯基距离 ④ 切比雪夫距离
如何利用matlab求r型聚类分析
Cluster Analysis
这个是matlab聚类分析模块的文档,里面有很多的例子。
Cluster Analysis
这个是matlab进行聚类分析的几个例子。你可以看一下,看了这些,对于聚类分析应该差不多了。
主要有:系统聚类、k均值聚类、密度聚类等方法。
聚类分析的基本思想和功能是什么
聚类分析的基本思想
根据相似性( 亲疏关系),具体找出一些能够度量样品或指标之间相似程度的统计量, 把一些相似程度较大的样品( 或指标) 聚合为一类, 把另外一些相似程度较大的样品( 或指标) 又聚合为另一类; 关系密切的聚合到一个小的分类单位, 关系疏远的聚合到一个大的分类单位, 直到把所有的样品(或指标)聚合完毕。
聚类分析分两种:Q型聚类(对样本的聚类),R型聚类(对变量的聚类)
聚类分析需要注意的是,一般小样本数据可以用系统聚类法,大样本数据一般用快速聚类法(K均值聚类法),当研究因素既有分类变量又有计量变量,可以用两步聚类。
q型聚类分析方法
聚类分析:聚类分析是通过数据建模简化数据的一种方法。“物以类聚,人以群分”正是对聚类分析最好的诠释。本文就具体介绍一下聚类分析,以及就按样本进行聚类分析的分析。
一、聚类分析可以分为:
对样本进行聚类分析(Q型聚类),此类聚类的代表是K-means聚类方法;
对变量(标题)进行聚类分析(R型聚类),此类聚类的代表是分层聚类。
常见为样本聚类,比如有500个人,这500个人可以聚成几个类别。资料来源:SPSSAU帮助手册-聚类分析
聚类分析(Q型聚类)用于将样本进行分类处理,通常是以定量数据作为分类标准。如果分析人员需要是按样本进行聚类,则使用SPSSAU的进阶方法模块中的“聚类分析”功能,SPSSAU其会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。
如果是按变量(标题)聚类,此时应该使用分层聚类,并且结合聚类树状图进行综合判定分析,得出科学分析结果。比如当前有8个裁判对于300个选手进行打分,试图想对8个裁判进行聚类,以挖掘出裁判的打分偏好风格类别情况。
还没有评论,来说两句吧...