Oracle中的位图索引是什么,怎么用的啊
主要分为一般索引和位图索引,一般索引就是B+树(大名鼎鼎的矮胖树),mysql和sybase 还有特殊的聚簇索引(少了一次检索而已),位图索引就是bitmap。NOSQL一般在写多读少场景下使用LSM树。
nosql的三种类型
NoSQL数据库根据数据模式的不同分为四种类型:键值数据库、文档型数据库、列族型数据库和图数据库。
1.键值数据库
键值数据库以键/值对形式存储数据,键必须唯一,这和哈希表的存储/操作方式类似。主键对应的值可以是任意二进制数据(包括文本数据),NoSQL数据库不知道数据内部细节,应用程序负责解析其语义。应用编程接口非常简单,支持读、写和删除键值对。有些键值数据库支持主键排序和范围(Range)操作。键值数据库性能出色,扩展性很好。流行的键值数据库包括Riak、Redis(由于可以存储集合、列表等,也称为数据结构服务器)、Memcached等。
2.文档型数据库
文档型数据库的核心数据模型是文档(半结构化数据),以键/文档对存储。文档可以是XML、JSON、BSON等格式。文档多为树形结构,可以包含数组、子文档等。不同的文档可以有不同的字段,相同的字段可以有不同的数据类型。和键值数据库相比,文档内容对数据库可见,因而支持对文档的特定字段建立索引以实现高效检索。常见的文档型数据库包括MongoDB、CouchDB等。
3.列族型数据库列族型(Column-family)\
数据库支持定义多个列族,每个列族内允许定义可变数量的列,支持动态定义新列。通常将逻辑上相关、经常同时访问的数据放在一个列族内。和关系数据模型相比,可以把列族看成关系模型的一个列,列对应的值是一个复杂结构。常见的列族型数据库有Cassandra、HBase、Hypertable等。
4.图数据库
图数据库支持非常灵活的实体关系,实体称为顶点,实体间的关系称为边。在图数据库中,边是内嵌的概念。常见的图数据库有Neo4J、OrientDB等。
mysql innodb建立普通索引怎么写
先从数据结构的角度来答。
题主应该知道B-树和B+树最重要的一个区别就是B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域。
这就决定了B+树更适合用来存储外部数据,也就是所谓的磁盘数据。
从Mysql(Inoodb)的角度来看,B+树是用来充当索引的,一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上。
那么Mysql如何衡量查询效率呢?磁盘IO次数,B-树(B类树)的特定就是每层节点数目非常多,层数很少,目的就是为了就少磁盘IO次数,当查询数据的时候,最好的情况就是很快找到目标索引,然后读取数据,使用B+树就能很好的完成这个目的,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时啊!),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。这是优点之一。
另一个优点是什么,B+树所有的Data域在叶子节点,一般来说都会进行一个优化,就是将所有的叶子节点用指针串起来。这样遍历叶子节点就能获得全部数据,这样就能进行区间访问啦。
至于MongoDB为什么使用B-树而不是B+树,可以从它的设计角度来考虑,它并不是传统的关系性数据库,而是以Json格式作为存储的nosql,目的就是高性能,高可用,易扩展。首先它摆脱了关系模型,上面所述的优点2需求就没那么强烈了,其次Mysql由于使用B+树,数据都在叶节点上,每次查询都需要访问到叶节点,而MongoDB使用B-树,所有节点都有Data域,只要找到指定索引就可以进行访问,无疑单次查询平均快于Mysql(但侧面来看Mysql至少平均查询耗时差不多)。
总体来说,Mysql选用B+树和MongoDB选用B-树还是以自己的需求来选择的。
还没有评论,来说两句吧...